Vol.41, No.1 February 2023

辐射法制备环氧功能化聚乙烯-辛烯及在 尼龙6增韧改性中的应用

梁青如¹ 季珎琰² 董春雷² 张 帆² 邢 哲² 安雅睿¹ 吴国忠^{2,3} ¹(上海理工大学 上海 200093) ²(中国科学院上海应用物理研究所 上海 201800)

³(上海科技大学 上海 200031)

摘要 利用[®]Coγ射线辐射接枝法制备环氧功能化的乙烯-辛烯共聚物(POE-g-PGMA),并且采用双螺杆熔融 挤出法制备添加 POE-g-PGMA 的尼龙 6/聚乙烯-辛烯(PA6/POE)合金。研究了添加 POE-g-PGMA 对 PA6/POE 合金力学性能、热性能、表面形貌、界面相容性和吸水特性的影响。结果表明:γ射线引发了 GMA 在 POE 上的接 枝聚合反应,PA6/POE 合金断面的 SEM 照片显示添加 POE-g-PGMA 后 POE 分散相粒径显著减小,表明 POE-g-PGMA 起到增容剂的作用:Molau 试验的结果证实了 POE-g-PGMA 与 PA6之间的增容反应;热分析表明,分散 相 POE 及 POE-g-PGMA 的加入对 PA6 的熔融行为影响不大,但在降温结晶过程中结晶温度提前约 18 °C,结晶 度提升约为4.5%。此外,与未增容 PA6/POE 合金相比,增容 PA6/POE 合金的缺口冲击强度显著提高,在本实验 条件下,POE-g-PGMA 添加量为 3%时缺口冲击强度最高值为纯 PA6 的 2.75倍。 关键词 辐射接枝,环氧功能化,尼龙6,界面相容性,缺口冲击强度

中图分类号 TQ323,TL13

DOI: 10.11889/j.1000-3436.2022-0107

Epoxy-functionalized polyethylene-octene prepared by γ-ray radiation and its application in polyamide 6 toughening modification

LIANG Qingru¹ JI Zhenyan² DONG Chunlei² ZHANG Fan² XING Zhe² AN Yarui¹ WU Guozhong^{2,3} ¹(University of Shanghai Science and Technology, Shanghai 200093, China) ²(Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China)

³(Shanghai Tech University, Shanghai 200031, China)

ABSTRACT Epoxy-functionalized ethylene-octene copolymer (POE-*g*-PGMA) was prepared by ⁶⁰Co γ -ray radiation, and polyamide 6/polyethylene-octene blend (PA6/POE) containing POE-*g*-PGMA was prepared by twinscrew melt extrusion. In this study, the mechanical properties, thermal properties, surface morphology, interfacial compatibility, and water absorption properties of PA6/POE blends with added POE-g-PGMA were investigated. The

Received 14 October 2022; accepted 28 November 2022

基金资助:中国科学院上海应用物理研究所重大科技项目(E215101031)资助

第一作者:梁青如,男,1998年2月出生,2020年于洛阳师范学院获得学士学位,现为上海理工大学在读硕士研究生,化学工程 专业

通信作者: 吴国忠, 研究员, E-mail: wuguozhong@sinap.ac.cn; 邢哲, 助理研究员, E-mail: xingzhe@sinap.ac.cn 收稿日期: 初稿 2022-10-14; 修回 2022-11-28

Supported by Major Scientific and Technological Project of Shanghai Institute of Applied Physics, Chinese Academy of Chinese Academy of Sciences (E215101031)

First author: LIANG Qingru (male) was born in February 1998, and obtained his bachelor's degree from Luoyang Normal University in 2020. Now he is a graduate student at University of Shanghai Science and Technology, majoring in chemical engineering

Corresponding author: WU Guozhong, professor, E-mail: wuguozhong@sinap. ac. cn; XING Zhe, assistant professor, E-mail: xingzhe@sinap.ac.cn

results showed that GMA was successfully grafted on POE by γ -ray radiation. The morphological analysis showed that the addition of POE-g-PGMA enhanced the dispersion of POE particles in the PA6 matrix. In particular, it demonstrated that with the addition of POE-g-PGMA, pure PA6 has good interfacial compatibility with POE. The results of the Molau test confirmed the compatibilization reactions between POE-g-PGMA and PA6. The thermal analysis showed that the addition of POE and POE-g-PGMA in the dispersed phase had negligible effect on the melting behavior of PA6; however, the crystallization temperature of PA6 improved by approximately 18 °C during the cooling crystallization process, and the crystallinity increased by approximately 4.5%. Furthermore, the impact strength of the compatibilized PA6/POE blend was significantly higher than that of the PA6/POE blend, with the highest value of impact strength obtained at a POE-g-PGMA content of 3% being approximately 2.75 times greater than that of pure PA6 under the experimental conditions.

KEYWORDS Radiation grafting, Epoxy functionalization, Polyamide 6, Interfaciale compatibility, Notched impact strength

CLC TQ323, TL13

聚酰胺(Polyamide,PA)俗称尼龙,是一种具有 良好力学性能、耐磨损性、耐腐蚀性、低摩擦系数 等^[1-2]优点的热塑性工程塑料,在3D打印基材、润滑 剂、家装耗材、电子元配件等领域有广泛应用。一方 面,聚酰胺分子主链上存在酰胺官能团导致高吸水 率,引起产品尺寸不稳定;另一方面,聚酰胺的抗冲 击性能差和成型收缩率高,导致其在使用中存在一 些缺陷。因此,如何在改善聚酰胺冲击强度和降低 吸水率的同时保持一定力学性能是实际工业应用 中需要解决的问题。

在聚酰胺中添加聚乙烯、聚丙烯等聚烯烃或其 他聚烯烃弹性体[3-6]能有效改善其冲击强度。 El-Wakil 等^[7]利用马来酸酐接枝低密度聚乙烯 (LDPE-g-MA)作为质量比为80/20的LDPE/PA6体 系的相容剂时发现,LDPE-g-MA质量分数为8% 时,PA6在LDPE基体中分布规则,且粒径缩小至 240 nm,拉伸强度、弯曲强度等机械性能较未添加 相容剂的LDPE/PA6有所提升。Silva等^[8]以马来酸 酐接枝高密度聚乙烯(HDPE-alt-MAH)为相容剂增 容了质量比为25/75的HDPE/PA12体系,发现该体 系经质量分数2%的HDPE-alt-MAH 增容后具有了 更高的硬度、韧性、强度和抗变形能力,更适合工程 应用。Liu等^[9]以衣康酸(ITA)为接枝单体通过熔体 接枝法制备了接枝率为1.36%的衣康酸接枝的聚乙 烯-辛烯(POE-g-ITA),在与PA6熔融共混过程中,增 容剂POE-g-ITA与PA6发生原位反应生成嵌段共聚 物POE-PA6,改善了PA6/POE 共混物的相容性,增 强了共混物的冲击强度,共混物缺口冲击强度最高 达到 103.2 kJ/m²,约为纯 PA6 的 12 倍。Esmizadeh 等^[10]评价了同时添加碳纳米管(CNTs)和马来酸酐 接枝的三元乙丙橡胶(EPDM-g-MA)对两种不同分子量PA6的韧性效果。在引入CNTs后,EPDM-g-MA的颗粒尺寸明显减小,并伴有形状变化,在机械性能和动态力学性能方面都显现出引入CNTs在保持原有性能下有较明显的改善。Lin等^[11]研究了马来酸酐接枝聚乙烯-辛烯共聚物(POE-g-MAH)对尼龙6/烯烃嵌段共聚物(PA6/OBC)体系形态、流变行为和机械性能的影响。SEM分析表明,POE-g-MAH的加入增强了OBC颗粒在PA6基体中的分散性。PA6/OBC体系的流变行为随POE-g-MAH含量的增加而改善。含质量分数7%的POE-g-MAH的共混体系冲击强度比纯PA6的冲击强度高约两倍。

向不相容的共聚物共混体系中加入相容剂可 以改善共混体系相容性,提高其力学性能^[12]。辐射 接枝法^[13-14]制备相容剂,相比于溶液法^[15]、熔融 法^[16]、固相法^[17]和悬浮法^[18]制备相容剂,是一种快 捷、后处理简单、易实现经济生产的方法。Tan^[19]研 究了γ射线引发马来酸酐(MAH)接枝PP的反应,探 讨了MAH浓度和吸收剂量对接枝度的影响。Jha 等^[20]在水介质中将甲基丙烯酸(MAA)辐射接枝到 POE表面,结果表明,极性MAA的接枝改善了POE 表面的亲水性,但并未改变原材料力学性能,在一 定程度上扩大了POE的应用范围。目前,关于接枝 羧酸或酸酐到聚烯烃上进行增容的研究有很多,但 是利用辐射接枝法制备环氧功能型聚烯烃后反应 共混增容的研究还鲜见报道。

本文选用⁶⁰Coγ射线源,以乙烯-辛烯共聚物 (POE)为基材,选用甲基丙烯酸缩水甘油酯(GMA) 为功能基团单体,制备了POE-g-PGMA增容剂。重 点考察了辐射法制备的增容剂在PA6/POE合金中 的增韧改性应用,并且分析了环氧基团功能化的乙 烯-辛烯共聚物在PA/POE合金增韧中所引起的表面 形貌、力学性能以及热性能的变化。

1 材料与方法

1.1 原料与试剂

乙烯-辛烯共聚物(POE),牌号8150,美国DOW 公司;甲基丙烯酸缩水甘油酯(GMA),分析纯,上海 麦克林生化科技有限公司;聚酰胺6(PA6),牌号 M2400,东莞市塑宇化工有限公司;无水乙醇、甲酸、 二甲苯、三氯乙酸和氢氧化钾均为分析纯,购自国 药化学试剂有限公司。所有试剂在使用前未经过纯 化处理。

1.2 POE-g-PGMA的制备

将 POE 和质量分数 4%的 GMA 加入 Haake 转 矩流变仪中进行熔融混合,设定流变仪转子速率为 80 r/min,共混时间为7 min,结束后趁热将共混物剪 成颗粒备用。使用中国科学院上海应用物理研究所 的⁶⁰Coγ射线源,活度4.105×10¹⁵ Bq,在室温空气中 辐照上述共混物,剂量率为2 kGy/h,总吸收剂量为 10 kGy。制备流程见图1。

图1 POE-g-PGMA制备流程图 Fig.1 Flow chart of POE-g-PGMA preparation

1.3 POE-g-PGMA的纯化及接枝率测定

纯化:取约2g接枝物放入装有100 mL二甲苯 溶液的三口烧瓶中,在120 ℃下冷凝回流2h,待其 完全溶解后,将溶液通过镍网装入有100 mL丙酮溶 液的烧杯中进行沉降,以便除去游离的GMA和均 聚物等杂质。对沉降物进行抽滤,并用丙酮洗涤3 次,将纯化后的接枝物在真空烘箱中烘干至恒重。

接枝率测定:称取0.5g提纯后的接枝物溶于 70mL二甲苯中,然后加入10mL三氯乙酸-二甲苯 标准溶液(0.1mol/L)中,加热回流2h,使GMA与三 氯乙酸反应完全,再加入2滴酚酞指示剂(10g/L), 用0.1mol/L的KOH-乙醇标准溶液滴定至终点,并 做空白试验^[21]。

1.4 PA6/POE-g-PGMA/POE 合金制备

将POE-g-PGMA和PA6/POE按照比例(表1)混 合,经双螺杆挤出,各段螺杆温度设定为210℃ -220℃-230℃-230℃-230℃-230℃-230℃-230℃,喂 料速度12 r/min,螺杆转速60 r/min。挤出物经冷水 淬火后切成颗粒。粒料在80℃真空烘干24h后用注 塑机在240~250℃下制作成标准冲击测试样条和拉 伸测试样条,测试前样条置于23℃恒温条件下储存 24h。

表1 PA6/POE-g-PGMA/POE共混配方 Table 1 Composition of the samples

样品	PA6	POE	POE-g-PGMA
Sample description	/ %	/ %	/ %
PA6	100	0	0
POE	0	100	0
PA6/POE/PG0	90	10	0
PA6/POE/PG1	90	10	1
PA6/POE/PG2	90	10	2
PA6/POE/PG3	90	10	3

注:G0,PA6/POE/PG0;G1,PA6/POE/PG1;G2,PA6/POE/ PG2;G3,PA6/POE/PG3。

Note: G0, PA6/POE/PG0; G1, PA6/POE/PG1; G2, PA6/POE/ PG2; G3, PA6/POE/PG3.

1.5 表征方法

1.5.1 红外光谱测试

使用 Bruker Tensor 207型傅里叶变换红外光谱 仪(Fourier transform infrared, FTIR)全反射模式下 进行 POE-g-PGMA 的结构表征,波数范围为600~ 4 000 cm⁻¹,分辨率为4 cm⁻¹,扫描次数为32次。

1.5.2 合金力学性能测试

将注塑成150 mm×10 mm×4 mm的样条,在深 圳万斯试验机有限公司ETM 503B型机电万能试验 机上测定抗拉强度、断裂伸长率,测试方法参照 ASTM D638, 拉伸速率 20 mm/min。对于每个条件, 测试5个样本,并对结果进行算术平均。

1.5.3 合金热性能分析

使用 Netzsch TG 209F3 型热重分析仪(Thermal Gravimetric Analyzer, TGA)测定共混物的热稳定性,测试温度范围100~700°C,升温速率10°C/min, 氮气流速20 mL/min。使用 Mettler DSC 3型差示扫 描量热仪(Differential scanning calorimetry, DSC)测定共混物熔点及凝固点,测试温度范围30~270°C, 冷却降温速率及二次加热升温速率均为10°C/min, 氮气流速50 mL/min。

1.5.4 合金形貌测试

试样在液氮中断裂,并在二甲苯中蚀刻去除 POE相。样品断面喷金处理后,在JEOL JSM6360LV 扫描电子显微镜(日本东京JEOL 有限公司)下观察 形貌,工作电压 15 kV。使用 Image Pro Plus 软件分 析 POE 相的平均直径*D*_n。

1.5.5 The Molau Test

在不同试管中将约100 mg样品与20 mL 98% 甲酸进行混合。混合物在室温下储存22 h。

1.5.6 吸水率测定

将试样在烘箱中干燥3h,然后置于干燥器中冷却。冷却后立即称重,然后在23℃的水中浸泡 768h,分别在24h、48h、96h、192h、384h和768h 后检查重量变化,测试方法参照ASTMD570。

2 结果与讨论

2.1 POE-g-PGMA的辐射接枝

为了提高POE与PA之间的相容性,采用共辐射接枝技术,在POE上接枝GMA单体。为验证是否发生了接枝反应,对共辐射接枝且提纯后的共聚物进行红外光谱测试。如图2所示,与纯POE和未辐照共混物相比,辐照并提纯后共混物在1714 cm⁻¹处出现了GMA中羰基特征吸收峰,除羰基特征峰吸收外,在1000 cm⁻¹到1250 cm⁻¹间呈现了-C-O-C-吸收峰,说明GMA已接枝到POE分子链上。对纯化后的POE-g-PGMA进行化学滴定法测定其接枝率,接枝率为2.8%,接枝率(G)按式(1)计算。

$$G = \frac{c(V_2 - V_1) \times 142.15}{1\,000m} \times 100\% \tag{1}$$

式中:GMA单元的分子量142.15 g/mol; c 为标定过 后真实准确的KOH-乙醇标准溶液物质的量浓度, mol/L; V₁为滴定至终点时消耗KOH-乙醇标准溶液 的体积,mL; V₂为做空白试验滴定至终点消耗KOH-乙醇标准溶液的体积,mL; m 为准确称取接枝物的 质量,g。

图 2 POE、未辐照POE-GMA 和辐照后环氧化 POE-g-PGMA 的红外光谱 Fig.2 FTIR Spectra of POE, non-irradiated-POE-GMA and irradiated-POE-g-PGMA

2.2 合金的形貌分析

使用 SEM 观察 10% POE 含量的 PA6/POE 合金 断面形貌为研究对象,PA6/POE 样品在观察前进行 了刻蚀,孔洞对应于合金的 POE 相,如图3 所示。

图3(a)显示出纯PA6相为脆性断裂。如图3(b) 所示,对于未增容的PA6/POE合金,在断面上观察 到形状不规则的孔洞,由于未增容,相容性差、界面 作用力弱,导致分散相孔径较大。通常不混容的聚 合物合金最终形态被认为是受分散相破碎和聚结 的影响[2,22],较高浓度的分散相由于聚结形成较大 粒径的颗粒^[23]。因此需要合适的相容剂来促进POE 颗粒在 PA6 相中的分散。在 PA6/POE 合金中加入 POE-g-PGMA后,随着POE-g-PGMA含量的增加, 分散相POE对应的孔径减小,孔密度增多,如图3 (c)、(d)、(e)所示,POE相粒径分布和平均粒径的降 低是POE-g-PGMA的增容作用的结果,导致分散相 聚结受到抑制和界面张力降低^[24-25]。PA6和POE之 间的相容性和界面组合得到改善,增容的PA6/POE 合金表现出更精细的分散相形态,这是PA6/POE合 金机械性能改善的主要原因。

图 3 PA6与不同POE-g-PGMA含量PA6/POE合金的断面形貌:(a)PA6;(b)G0;(c)G1;(d)G2;(e)G3 Fig.3 Fracture-surface morphologies of PA6 and PA6/POE blends with different POE-g-PGMA contents: (a) PA6; (b) G0;(c) G1; (d) G2; (e) G3

2.3 合金的力学性能

图4(a)和(b)显示了不同POE-g-PGMA含量 PA6/POE合金拉伸测试前后的照片。随着POE-g-PGMA的加入试样颜色不断变黄。图4(c)和(d)是 拉伸强度、断裂伸长率、弯曲强度和冲击强度随 POE-g-PGMA含量增加的变化曲线。

与纯样相比, 增容后的 PA6/POE 合金试样断裂

伸长率增加;从图4(c)、(d)可以看出,未增容的 PA6/POE 合金的缺口冲击强度增强有限,这归因于 PA6和POE之间相容性差,如扫描电镜图3(b)照片 所示。然而,当POE-g-PGMA添加到PA6/POE 合金 中,增容合金的缺口冲击强度随着POE-g-PGMA含 量的增加而显着提高。特别是G3样品的缺口冲击 强度最高达6.81 kJ/m²,约为纯PA6的2.75倍。

2.4 合金的热性能

测试前对样品80℃恒温干燥4h。图5显示了 纯PA6与不同POE-g-PGMA含量的PA/POE合金的 降温和二次升温DSC曲线。T_m、ΔH_m、T_c和X_c结果总 结列于表2。数据表明,POE和POE-g-PGMA的添加 对未增容和增容合金中PA6的T_m几乎没有影响。然 而,所有共混合金中PA6的T。受添加POE-g-PGMA 增容剂影响。当POE-g-PGMA的添加量从质量分数 0%增加到3%,增容合金中PA6相的T从167℃上 升到185℃。这是由于POE-g-PGMA和PA6之间相 互反应阻碍了分子链间的移动和重排,有趣的是, 适当添加POE-g-PGMA提高了PA6相的结晶度,约 4.5%。图6为PA6/POE合金样品的TG曲线,呈现为 一级失重台阶[26]。共混增容后合金样品的初始分解 温度(失重约5%对应的分解温度,T_{los,5%})由未共混 时382 ℃上升共混未增容的400 ℃再到共混增容后 的405℃,变化了约20℃。这样看来,共混增容后 PA6/POE 合金热稳定性有了明显的改善。

图5 不同POE-g-PGMA含量合金的DSC曲线: (a)熔融曲线;(b)降温结晶曲线(彩色见网络版) Fig.5 DSC curves of PA6 and PA6/POE blends with different POE-g-PGMA contents: (a) melting curves; (b) crystallization curves (color online)

表2 合金的热性能列表 Table 2 Thermal properties of the blends from DSC									
样品	$T_{\rm m}$	$T_{\rm c}$	$\Delta H_{\rm m}$	$\Delta H_{\rm c}$	Crystal-	$T_{\rm loss,5\%}$			
Sample	/ °C	/ °C	$/\left(J\!\cdot\!g^{_{-1}}\right)$	$/\left(J\!\cdot\!g^{_{-1}}\right)$	linity/%	/ °C			
PA6	221.47	167.82	60.73	56.37	24.50	382			
POE	-	-	-	_	-	438			
G0	221.56	185.89	52.89	62.44	27.14	400			
G1	221.98	185.32	48.39	60.21	26.17	399			
G2	221.40	186.48	52.06	66.66	28.97	401			
G3	221.45	185.14	46.82	55.88	24.28	405			

(彩色见网络版) Fig.6 TG curves of PA6 and PA6/POE blends with different POE-g-PGMA contents (color online)

2.5 界面相容性测试

Molau 试验用于确认在增容的 PA6/POE 合金中 两 相 的 相 容 性^[27]。图 7 显 示 了 纯 POE、POE-*g*-PGMA、纯 PA6、未 增容的 G0 和 G2 的 Molau 试验 结果。

图7 不同 POE-g-PGMA 含量合金的界面相容性示意图:

(a)纯 POE;(b)纯 POE-g-PGMA;(c)纯 PA6;
(d)未增容 G0 合金;(e)增容 G2 合金

Fig.7 Interface compatibility diagram of PA6/POE blends with different POE-g-PGMA contents: (a) pure POE, (b) pure POE-g-PGMA, (c) pure PA6, (d) the uncompatibilized G0 blend, and (e) the compatibilized G2 blend

由图7(a)、(b)可观察到,纯POE和纯POE-g-PGMA不溶解于甲酸。纯PA6完全溶解在甲酸中形

成透明溶液(图7(c))。图7(d)显示,未增容的G0的 PA6相溶解在甲酸中,POE相漂浮在溶液表面,表明 PA6基质和POE分散相之间的粘附性差。然而,在 图7(e)中含质量分数2%POE-g-PGMA的PA6/POE 合金在甲酸中形成乳白色溶液。这一现象表明,在 共混过程中,增容剂POE-g-PGMA环氧基与PA6端 基反应,生成的接枝共聚物POE-g-PA6可以起到乳 化剂^[28]的作用,增强了两相之间的相容性。

2.6 吸水率测试

由于含有酰胺基团,PA6具有一定的吸水性,会

导致尺寸变化、颜色变化和降解引起的质量损失。 POE是非极性聚合物,具有疏水性。通过共混POE 改善PA6吸水性。图8(a)显示了PA6/POE合金在 768h内吸水率随时间的变化。图8(b)显示在768h 时PA6/POE合金的吸水率随着POE-g-PGMA含量 变化,数据显示,POE显著降低了PA6的吸水性,增 容剂有助于降低PA6/POE合金的吸水率。由于POE 减慢了水分子在PA6中的扩散速率,POE-g-PGMA 改善POE与PA6的良好分散,且与PA6之间形成氢 键,导致PA6中游离酰胺基团的数量减少,降低了 PA6亲水性。

(a)0~768 h吸水率曲线; (b)768 h不同 POE-g-PGMA 含量吸水率曲线
 Fig.8 Hygroscopic coefficient as a function of POE-g-PGMA content in PA6/POE blends:
 (a) 0~768 h hygroscopic coefficient curve; (b) hygroscopic coefficient curve of different POE-g-PGMA contents at 768 h

3 结论

通过辐射接枝技术制备了一种环氧功能化的 乙烯-辛烯共聚物(POE-g-PGMA),其中GMA接枝 率为2.8%,并以此与PA6共混增容组成了PA6/POE 合金体系。与纯PA6相比,共混后的PA6/POE 合金 吸水率下降了约1%。随着POE-g-PGMA的添加, PA6/POE 合金中分散相POE的孔径减小,孔密度增 多,两相边界进一步模糊,极大地提高了PA6/POE 合金合金的相容性和冲击性能。此外,增容PA6/ POE 合金相较于纯PA6表现出更高的耐热分解温 度,说明了POE与POE-g-PGMA有助于改善PA6的 热稳定性。本工作结果对加工一些具有较高冲击强 度和适中抗拉强度的尼龙用品有一定的参考价值。

作者贡献声明 梁青如、吴国忠提出研究思路,设 计研究方案;梁青如、邢哲进行实验;梁青如、季珎 琰、董春雷进行表征;季珎琰、张帆、邢哲参与数据 分析;梁青如整理手稿;邢哲、吴国忠对手稿进行修 订。全部作者均阅读并同意最终文本。

参考文献

- Cai Y B, Li Q, Wei Q F, et al. Structures, thermal stability, and crystalline properties of polyamide6/ organic-modified Fe-montmorillonite composite nanofibers by electrospinning[J]. Journal of Materials Science, 2008, 43(18): 6132-6138. DOI: 10.1007/s10853-008-2921-6.
- Vannini M, Marchese P, Celli A, *et al.* Strategy to improve PA6 performances by melt compounding[J]. Polymer Testing, 2018, 67: 84-91. DOI: 10.1016/j. polymertesting.2018.02.021.
- 3 Aparna S, Purnima D, Adusumalli R B. Review on various compatibilizers and its effect on mechanical properties of compatibilized nylon blends[J]. Polymer-Plastics Technology and Engineering, 2017, 56(6): 617-

634. DOI: 10.1080/03602559.2016.1233280.

- 4 Poongavalappil S, Svoboda P, Theravalappil R, *et al.* Study on the influence of electron beam irradiation on the thermal, mechanical, and rheological properties of ethylene-octene copolymer with high comonomer content [J]. Journal of Applied Polymer Science, 2013, **128**(5): 3026-3033. DOI: 10.1002/app.38479.
- 5 Basuli U, Chaki T K, Naskar K. Influence of Engage® copolymer type on the properties of Engage®/silicone rubber-based thermoplastic dynamic vulcanizates[J]. Express Polymer Letters, 2008, 2(12): 846-854. DOI: 10. 3144/expresspolymlett.2008.99.
- 6 Hong C E, Lee Y, Jin B E, *et al.* Tensile properties and stress whitening of polypropylene/polyolefin elastomer/ magnesium hydroxide flame retardant composites for cable insulating application[J]. Journal of Applied Polymer Science, 2005, **97**(6): 2311-2318. DOI: 10.1002/ app.21776.
- 7 El-Wakil A A, Moustafa H, Abdel-Hakim A. Effect of LDPE-g-MA as a compatibilizer for LDPE/PA6 blend on the phase morphology and mechanical properties[J]. Polymer Bulletin, 2022, 79(4): 2249-2262. DOI: 10.1007/s00289-021-03618-9.
- 8 de Almeida Santos da Silva G, D' Almeida J R M. Mechanical properties and morphology of HDPE/PA12 blends compatibilized with HDPE-alt-MAH[J]. Polymers and Polymer Composites, 2022, **30**: 096739112110640. DOI: 10.1177/09673911211064049.
- 9 Liu X J, Gu X H, Hou B Q. Preparation of POE graft copolymer and its application of toughening modification for PA6[J]. Polymer-Plastics Technology and Engineering, 2013, 52(4): 344-351. DOI: 10.1080/ 03602559.2012.748801.
- 10 Esmizadeh E, Vahidifar A, Shojaie S, *et al.* Tailoring the properties of PA6 into high-performance thermoplastic elastomer: simultaneous reinforcement and impact property modification[J]. Materials Today Communications, 2021, **26**: 102027. DOI: 10.1016/j. mtcomm.2021.102027.
- 11 Lin X T, Liu Y J, Chen X, et al. Reactive compatibilization of polyamide 6/olefin block copolymer blends: phase morphology, rheological behavior, thermal behavior, and mechanical properties[J]. Materials (Basel, Switzerland), 2020, **13**(5): 1146. DOI: 10.3390/ ma13051146.
- 12 张雪娇, 赵晓莉. 聚合物合金相容性研究进展[J]. 应用

化工, 2012, **41**(8): 1448-1451. DOI: 10.16581/j. cnki. issn1671-3206.2012.08.005.

ZHANG Xuejiao, ZHAO Xiaoli. Research progress in compatibility of polymer alloy[J]. Applied Chemical Industry, 2012, **41**(8): 1448-1451. DOI: 10.16581/j.cnki. issn1671-3206.2012.08.005.

- 13 熊智,李玉龙,冯鑫鑫,等.辐射制备复合超级吸水材料及其抗紫外性能[J].辐射研究与辐射工艺学报,2022,40(4):040202.DOI:10.11889/j.1000-3436.2022-0008.
 XIONG Zhi, LI Yulong, FENG Xinxin, *et al.* Radiation synthesis of a super absorbent polymer and its ultraviolet resistance property[J]. Journal of Radiation Research and Radiation Processing, 2022, 40(4): 040202.DOI: 10.11889/j.1000-3436.2022-0008.
- 14 Chowdhury S R, Sabharwal S. Molecular-scale design of a high performance organic-inorganic hybrid with the help of gamma radiation[J]. Journal of Materials Chemistry, 2011, 21(19): 6999-7006. DOI: 10.1039/ C1JM10943J.
- 15 Lima M S, Matias Á A, Costa J R C, *et al.* Glycidyl methacrylate-based copolymers as new compatibilizers for polypropylene/polyethylene terephthalate blends[J]. Journal of Polymer Research, 2019, **26**(6): 127. DOI: 10. 1007/s10965-019-1784-7.
- 16 Gopalan A M, Naskar K. Ultra-high molecular weight styrenic block copolymer/TPU blends for automotive applications: influence of various compatibilizers[J]. Polymers for Advanced Technologies, 2019, **30**(3): 608-619. DOI: 10.1002/pat.4497.
- 17 廖晓兰,杨学稳,郭晴晴.固相接枝法合成聚丙烯、马来 酸酐、苯乙烯的接枝物[J]. 天津化工, 2010, 24(1): 12-14. DOI: 10.3969/j.issn.1008-1267.2010.01.004.
 LIAO Xiaolan, YANG Xuewen, GUO Qingqing. Solid phase graft copolymerization of PP-g-(MAH-St) and its compatibilizing effect of PP/SBR blends[J]. Tianjin Chemical Industry, 2010, 24(1): 12-14. DOI: 10.3969/j. issn.1008-1267.2010.01.004.
- 18 Li Z, et al. A facile method to prepare polypropylene/poly (butyl acrylate) alloy via water-solid phase suspension grafting polymerization[J]. Chinese Chemical Letters, 2015, 26(11): 1351-1354. DOI: 10.1016/j. cclet. 2015. 06.018.
- 19 Tan X M. Radiation grafting of maleic anhydride onto polypropylene in solid state via ultrafine blend[J]. Radiation Effects and Defects in Solids, 2014, 169(5): 437-446. DOI: 10.1080/10420150.2014.905937.

- 20 Jha A, Ray Chowdhury S, Krishnanand K, et al. Radiation-assisted controlled grafting and reaction parameter optimization of an industrially important polyolefin elastomer (POE) [J]. Polymers for Advanced Technologies, 2016, 27(7): 889-897. DOI: 10.1002/pat. 3745.
- 21 毛泽誉. 烯烃共聚物的接枝改性及其在增韧PBT中的应用[D]. 长春: 长春工业大学, 2020.
 MAO Zeyu. Graft modification of olefin copolymer and application in toughening PBT[D]. Changchun: Changchun University of Technology, 2020.
- 22 Rossato J H H, Lemos H G, Mantovani G L. The influence of viscosity and composition of ABS on the ABS/SBS blend morphology and properties[J]. Journal of Applied Polymer Science, 2019, **136**(8): 47075. DOI: 10. 1002/app.47075.
- 23 Sundararaj U, Macosko C W. Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization[J]. Macromolecules, 1995, 28(8): 2647-2657. DOI: 10.1021/ma00112a009.
- 24 van Hemelrijck E, van Puyvelde P, Macosko C W, et al. The effect of block copolymer architecture on the coalescence and interfacial elasticity in compatibilized polymer blends[J]. Journal of Rheology, 2005, 49(3): 783-

798. DOI: 10.1122/1.1888625.

- 25 van Hemelrijck E, van Puyvelde P, Velankar S, *et al.* Interfacial elasticity and coalescence suppression in compatibilized polymer blends[J]. Journal of Rheology, 2004, **48**(1): 143-158. DOI: 10.1122/1.1634987.
- 26 张帆,季珎琰,沈蓉芳,等.灭菌剂量下γ射线辐照对环 烯烃共聚物的影响及机理研究[J].核技术,2022,45(3): 030302. DOI: 10.11889/j.0253-3219.2022.hjs.45.030302. ZHANG Fan, JI Zhenyan, SHEN Rongfang, *et al.* Effect and mechanism of γ -ray irradiation on cyclic olefin copolymer in the sterilization dose range[J]. Nuclear Techniques, 2022, 45(3): 030302. DOI: 10.11889/j.0253-3219.2022.hjs.45.030302.
- 27 Zhang J G, Deng J. The effect of maleic anhydride grafted styrene-ethylene-butylene-styrene on the friction and wear properties of Polyamide6/carbon nanotube composites[J]. Polymer-Plastics Technology and Engineering, 2011, 50(15): 1533-1536. DOI: 10.1080/ 03602559.2011.603778.
- 28 El-Wakil A A. Study on effect of natural rubber-graft-1, 2phenylenediamine as antioxidant on oxidation resistance for natural rubber[J]. Polymer-Plastics Technology and Engineering, 2007, 46(6): 661-666. DOI: 10.1080/ 15583720701271443.